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ABSTRACT

Morphological reconstruction of dendritic spines from fluo-
rescent microscopy is a critical open problem in neuro-image
analysis. Existing segmentation tools are ill-equipped to
handle thin spines with long, poorly illuminated neck mem-
branes. We address this issue, and introduce an unsupervised
path prediction technique based on a stochastic framework
which seeks the optimal solution from a path-space of pos-
sible spine neck reconstructions. Our method is specifically
designed to reduce bias due to outliers, and is adept at recon-
structing challenging shapes from images plagued by noise
and poor contrast. Experimental analyses on two photon mi-
croscopy data demonstrate the efficacy of our method, where
an improvement of 12.5% is observed over the state-of-the-art
in terms of mean absolute reconstruction error.

Index Terms— dendritic spines, segmentation, active
contour, geodesic shortest path, microscopy

1. INTRODUCTION

Dendritic spines, which appear as small membranous protru-
sions from a neuron’s dendritic shaft, are critical for establish-
ing excitatory synaptic contact in the neural circuitry. Mor-
phology of dendritic spines change with learning and brain
development, and studies have associated structural anoma-
lies of spines to several neuro-developmental diseases [1].
Spine anatomy is typically characterized by a post-synaptic
density rich region called spine head, which is connected to
the dendritic shaft via a membranous structure called spine
neck (see Fig. 1 and Fig. 2(b) for illustration). Structural
characteristics of the spine neck and head regions (such as
geodesic neck length, head and neck measurements etc.) are
critical to further our understanding about signal transmission
in the brain [2], which makes it crucial to study their anatom-
ical properties during brain development.

Deciphering the relationship between the anatomy and
function of neuronal components calls for large scale mor-
phological analysis of the individual structures. Automatic
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Fig. 1: (a) An example two photon sub-image of a dendritic shaft and
a thin spine (b) Segmentation of the spine head and dendritic shaft
via L2S [5] are shown via white and cyan contours respectively. The
manually annotated spine-neck path is shown in white dotted curve
(c) Predicted spine-neck shown by the yellow curve.

segmentation of dendritic spines in fluorescent microscopy is
a challenging problem especially when the spine head appears
detached from the neuronal shaft due to signal attenuation in
the neck membrane. Existing segmentation techniques often
assume proximity of the spine head to the dendritic shaft.
While this is valid for stubby spines with short necks, thin
dendritic spines with long protrusions are exceptions to this
rule, and consequently result in disjoint components via tra-
ditional segmentation methods (see Fig. 1). In this paper
we introduce an unsupervised model to reconstruct the spine
morphology by estimating the optimal path [3,4] which asso-
ciates the detached spine head to the corresponding dendritic
shaft. The motivation for this work, and the technical details
are discussed in the following section.

2. BACKGROUND AND MOTIVATION

In this study we primarily analyze thin dendritic spines with
poorly illuminated neck membranes which are difficult to seg-
ment automatically. An example is shown in Fig. 1(b), where
the segmentation method [5] fails to encapsulate the spine
morphology as a single connected structure. To address such
instances of incomplete segmentation, a few techniques have
been proposed to analyze the association between the disjoint
components. The graph-theoretic technique Tree2Tree [6]
uses geometric features to determine the connectivity between
the various subcomponents of an object. The fundamental
challenge in adapting this solution to our problem is that spine
heads are bulbous protrusions which cannot be modeled as



Fig. 2: (a) Illustration of the proposed algorithm (b) Spine morphol-
ogy and (c) Illustration of path-space parameterization. The path
points for λ = k are shown, and the red point indicates the intrinsic
median of the points.

tree shaped objects, which is a prerequisite for [6]. Simi-
larly, the variational method in [7] can only handle structural
discontinuities which are in close proximity to each other.
Another popular approach to solve this inter-structure asso-
ciation issue is to explore the local neighborhood of the de-
tached head to identify connectivity clues. Su et al. [8] use
directional filters to detect and segment dendritic spines, al-
though this method does not explicitly address the associ-
ation problem for detached cases. Erdil et al. [9] use de-
formable models with learned shape priors to segment spines
from two photon microscopy images. However, due to the rel-
ative scarcity of training samples for thin spines, such super-
vised models would suffer from significant class imbalance.
Janoos et al. [10] suggest iterative surface evolution to prop-
agate the spine head until it connects with the dendritic shaft.
While this method can handle detached spines, it is sensitive
to false positives due to clutter as the curve propagation ter-
minates immediately on reaching the nearest segmented ob-
ject in the field of view. In summary, precise morphological
reconstruction of thin dendritic spines remains a non-trivial
task which demands further investigation.

3. METHOD

The key contribution of this work is to estimate the entire
spine morphology from an incomplete segmentation. The
broader topics of automatic spine detection, or neurite seg-
mentation [7, 11] are not addressed here. We also assume
the availability of a reliable object detection technique (such
as [12]) to identify the spine head and the corresponding den-
dritic shaft. The initial localizations of the spine head and the
dendritic shaft are used to segment the structures using the ac-
tive contour model Legendre Level Set (L2S) [5] . While L2S
can reliably reconstruct both stubby and mushroom spines,
the elongated, thin varieties pose challenge due to significant
signal attenuation at the neck membrane. Our objective is to
identify the optimal curve to represent the undetected spine
neck. A schematic representation of the algorithm is shown
in Fig. 2(a), and our technique is formally presented next.

3.1. Problem formulation and mathematical details
We denote the centroid of the segmented spine head by the
coordinate ph = (xh, yh) ∈ Ω, where Ω ⊂ R2 defines the
domain of the (2D) image g : Ω 7→ R. The spine neck cen-
terline joining the head and the shaft is represented by a Lip-
schitz regular parametric curve C : [0, 1] 7→ Ω. Finding the
right parameterization method is essential to our solution, and
this will be detailed in the following subsections.

3.1.1. Path-Space and Minimal Paths
A path-space [13] of a collection of curves between the spine
head ph and any point p ∈ Ω on the dendritic shaft boundary
is defined as follows:

Cph,p = {Cj |Cj (0) = ph andCj (1) = p} ∀j ∈ N (1)

We seek the optimal path f̂ ∈ Cph,p from this path-space by
optimizing a suitable objective which penalizes imprecise re-
constructions. When both the source (ph) and the terminal
(p) points of the curve are known, Cohen and Kimmel [3]
describe a fast algorithm to compute a smooth curve as a so-
lution to the following initial value problem:

||∇Uh|| = P(x, y) with Uh(ph) = 0 (2)

where Uh(p) = inf
Cphp

∫ 1

0

(
w + P

(
C (λ)

))
︸ ︷︷ ︸

P̃

|C ′(λ)|dλ

Here C ∈ Cphp, and the geodesic distance map Uh : Ω 7→ R
defines the level set function of the arrival time of a wavefront
propagating from ph according to Ct = P̃−1N . Here Ct is
the partial derivative of the curve with respect to the pseudo
time t and N is the curve unit normal vector. P̃ = w + P
is the inverse speed function for curve propagation. The pos-
itive scalar w promotes smoothness, and P is typically de-
signed such that the valleys of the function would correspond
to the minimal geodesic. One such realization is P(x, y) =
e−µg(x,y). We choose w = 0.01 as prescribed in [14], and the
rational for selecting µ will be explained later.

3.1.2. Generative model for candidate path-space
By performing gradient descent on the potential function Uh,
it is theoretically feasible to extract all possible geodesic paths
in Cph,p, although such a brute force approach is computation-
ally restrictive. To circumvent this issue, we propose the fol-
lowing algorithm. Each point on the dendritic shaft boundary
set S = {ps} is associated with an arrival time ts of the front
propagated from ph by solving eq. 2 via fast marching [14].
A simple path prediction strategy which is similar to [10] is
to select the curve terminal p∗s ∈ S such that t∗s = min{ts},
but this is quite sensitive to clutter and the parameter µ, and
may result in suboptimal solutions(see Fig. 4). To avoid such
problems, we propose the following strategy. For each point
ps ∈ S, we associate a weight functionws ∈ [0, 1] as follows:

ws = 1− (ts − t−) / (t+ − t−) (3)



Here t+ and t− are the maximum and minimum values in
Ts = {ts}. We implement a stochastic sampling strategy to
compute a set Sc ⊂ S of most probable curve end points.
First, a random subset of points are selected from S. Then
each sample ps ∈ S is added to the candidate set Sc with
probability ws. This sampling (without replacement) proce-
dure is continued until a specified number (n) of path termi-
nals are accumulated. The candidate path terminals are used
to generate the candidate subspace Cn = {C1, . . . Cn} ⊂
Cph,p where n = |Sc|. This candidate path-space serves as
the observed data point set for the path estimation problem.

3.1.3. Path-space parameterization
The geodesic path prediction is expressed as f̂ = χ (Cn),
where χ is a predictor functional which needs to be estimated
from the observation Cn based on a specific optimality cri-
teria. However, in order to define a set of algebraic opera-
tions over Cph,p, it is first necessary to perform a suitable re-
parameterization of the path-space. This is done by defining
the curve parameter λ ∈ [0, 1] for each point (x, y) on a curve
C ∈ Cph,p as follows:

λ = 1− φ(x, y)/φ(xh, yh) (4)

Here φ denotes the level set function of the segmented den-
dritic shaft and is defined to be φ(x, y) ≥ 0 ∀(x, y) outside
the shaft segmentation [5], and the shaft boundary represents
the zero level set of the function. From eq. 4, we can infer that
λ = 1 when p ∈ S and λ = 0 if p = ph, which normalizes the
path-space such that C(0) = ph and C(1) = ps, ∀C ∈ Cph,p
and ps ∈ S (see Fig. 2(c) for illustration). This parameteriza-
tion strategy enables standard mathematical operations on the
elements of the path-space. Although eq. 4 implicitly assumes
simple curves without self loops, this is indeed an appropri-
ate assumption since in practice the geodesic path samples
obtained via eq. 2 are typically regularized to be smooth and
self-intersecting geodesic paths are rarely encountered.

3.1.4. Geodesic path prediction
We introduce a probabilistic framework to estimate the op-
timal curve to represent the spine neck centerline. In this
paradigm, the curve parameter λ is considered to be a real-
ization of some random variable Λ. Similarly, the curve co-
ordinates are assumed to be the realizations of a stochastic
response variable Y ∈ R2. Both Λ and Y are assumed to be
associated with a differentiable probability density function.
We wish to obtain the optimal functional f̂ by minimizing the
expected value of the stochastic function defined as follows:

f̂ = argmin
f

EY Λ

[
||Y − f(Λ)||1

]
or, f̂(λ) = argmin

f
EΛEY |Λ

[
||Y − f(Λ)||1

∣∣Λ = λ
]

(5)

Here EΛ [.] computes the expected value of a random vari-
able Λ. The joint expectation of Y and Λ is represented by

EY Λ [.], and EY |Λ [.] is the conditional expectation operator.
The solution to eq. 5 is obtained by minimizing the function
in a point-wise fashion [15]. Formally,

f̂(λ) = argmin
c∈R2

EY |Λ
[
||Y − c||1

∣∣Λ = λ
]

(6)

The spine neck is reconstructed by evaluating the path coordi-
nates atN sample points λi of the continuous curve parameter
space. Formally, the discrete equivalent of the optimal path is
evaluated for each λi as

f̂(λi) ≈ χ
(
C1(λi), . . . , Cn(λi)

)
, i = 1, . . . , N (7)

The function χ estimates the point-wise minimizer of eq. 6
by computing the intrinsic median [15] of the sample path
points evaluated at λ = λi (see Fig. 2(c)). Finally, a smooth
representation of the spine neck path is obtained by regressing
a cubic spline to the discrete set of path coordinates.

3.2. Discussion
Eq. 5 penalizes the `1 norm of the expected reconstruction
error, and the minimizer is realized in eq. 7 by computing
the point-wise intrinsic median of the observed candidate
path coordinates. Finding the intrinsic median requires an
ordering of the path points on the level sets of φ, which is
trivial to compute since the path-space is standardized by
the aforementioned parameterization procedure. The median
order statistic makes this solution robust to outliers in path
prediction, and the false positives are further reduced due to
stochastic sampling of the path terminals.

4. EXPERIMENTS

We demonstrate our algorithm on the dataset of two photon
microscopy images of dendritic spines presented in [16]. The
results are evaluated primarily on thin spines where the seg-
mentation tool L2S was unable to segment and associate the
head and the dendritic shaft. A few illustrative examples are
shown in Fig. 3 for qualitative assessment. The images in
Fig. 3 are characterized by significant signal attenuation in
the neck region, and consequently the head and the shaft are
rendered as separated objects. The second row of Fig. 3 shows
the spine neck prediction results using our method. An impor-
tant contribution of this work is to introduce stability and ro-
bustness in path prediction. Fig. 4 demonstrates two represen-
tative examples where the proposed solution (shown in yellow
trace) is able to extract the precise morphology of the spine
neck, as opposed to the front propagation method in [10] (in
red) which is susceptible to sub-optimal local solutions.

To quantitatively analyze the performance of our solu-
tion, we measure the accuracy of tracing the spine neck cen-
terline using the mean absolute error metric [7] between a
discrete reconstruction U = {u1, . . . , um} and the corre-
sponding manual annotation V = {v1, . . . , vn} (ui, vj ∈
R2). This is defined as MAE =

1

m

∑m
i=1 minj |ui − vj | +



Fig. 3: A few cases of path prediction for thin spines are shown here.
The white dotted curve indicates ground truth, and the predicted path
is shown in yellow. The cyan contour shows the dendritic shaft seg-
mentation, which is detached from the shaft head (white contour)

1

n

∑n
i=1 minj |vi − uj |. We measure the quantitative results

against the strategy in [10] which connects the spine head to
the nearest shaft point. Experiments were performed on a set
of 50 images, and the average MAE due to our method is
measured to be 4.2 ± 3.2 pixels, which is an improvement
of 12.5% over the competitor which yields an average MAE
of 4.8 ± 5.4 pixels. Furthermore, using our methodology we
observe 40% lower standard deviation of reconstruction er-
ror, which testifies to the robustness of our methodology. We
also analyzed the sensitivity of our algorithm to the choice of
the parameter µ which defines the curve propagation speed.
Experimental analysis reveal that the proposed method is sig-
nificantly stable for a wider range of µ ∈ [3.7, 10], whereby
the technique in [10] exhibits oscillatory behavior unless the
µ is precisely selected to be in the range µ ∈ [8.7, 10]. This
emphasizes the robustness of our methodology to model pa-
rameter selection.

5. CONCLUSION

To summarize, we have introduced a formal methodology
for accurate morphological reconstruction of thin dendritic
spines. The optimization criteria for path estimation ensures
robustness of our solution, since the point-wise estimate via
intrinsic median (eq. 7) efficiently rejects outliers. Addition-
ally, due to the intelligent path sampling strategy, we reduce
bias due to local minima issue. The experimental results have
been demonstrated on two-dimensional images, but the al-
gorithm can be extended to three dimensional analysis with
little modifications in the processing pipeline. This will be
explored in more detail in our future studies.
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